Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607038

RESUMO

Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA Longo não Codificante/genética
2.
mBio ; : e0068924, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624209

RESUMO

Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.

3.
Sci Rep ; 14(1): 3681, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355943

RESUMO

Yeast populations can undergo diversification during their growth and ageing, leading to the formation of different cell-types. Differentiation into two major subpopulations, differing in cell size and density and exhibiting distinct physiological and metabolic properties, was described in planktonic liquid cultures and in populations of colonies growing on semisolid surfaces. Here, we compare stress resistance, metabolism and expression of marker genes in seven differentiated cell subpopulations emerging during cultivation in liquid fermentative or respiratory media and during colony development on the same type of solid media. The results show that the more-dense cell subpopulations are more stress resistant than the less-dense subpopulations under all cultivation conditions tested. On the other hand, respiratory capacity, enzymatic activities and marker gene expression differed more between subpopulations. These characteristics are more influenced by the lifestyle of the population (colony vs. planktonic cultivation) and the medium composition. Only in the population growing in liquid respiratory medium, two subpopulations do not form as in the other conditions tested, but all cells exhibit a range of characteristics of the more-dense subpopulations. This suggests that signals for cell differentiation may be triggered by prior metabolic reprogramming or by an unknown signal from the structured environment in the colony.


Assuntos
Saccharomyces cerevisiae , Fermento Seco , Saccharomyces cerevisiae/metabolismo , Fermentação , Diferenciação Celular
4.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100365

RESUMO

In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.


Assuntos
Repressão Catabólica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição GATA/química , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Comput Struct Biotechnol J ; 19: 5613-5621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712401

RESUMO

Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.

6.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070491

RESUMO

During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mitocôndrias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Vias Biossintéticas/genética , Cromatografia Líquida , Regulação Fúngica da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/genética , Proteômica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Análise de Célula Única , Espectrometria de Massas em Tandem
7.
Methods Mol Biol ; 2276: 87-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060034

RESUMO

Mitochondrial retrograde signaling is a mitochondria-to-nucleus communication pathway, conserved from yeast to humans, by which dysfunctional mitochondria relay signals that lead to cell stress adaptation in physiopathological conditions via changes in nuclear gene expression. The most comprehensive picture of components and regulation of retrograde signaling has been obtained in Saccharomyces cerevisiae, where retrograde-target gene expression is regulated by RTG genes. In this chapter, we describe methods to measure mitochondrial retrograde pathway activation at the level of mRNA and protein products in yeast model systems, including cell suspensions and microcolonies. In particular, we will focus on three major procedures: mRNA levels of RTG-target genes, such as those encoding for peroxisomal citrate synthase (CIT2), aconitase, and NAD+-specific isocitrate dehydrogenase subunit 1 by real-time PCR; expression analysis of CIT2-gene protein product (Cit2p-GFP) by Western blot and fluorescence microscopy; the phosphorylation status of transcriptional factor Rtg1/3p which controls RTG-target gene transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/patologia , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 117(26): 15123-15131, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541056

RESUMO

Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.


Assuntos
Proliferação de Células/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485964

RESUMO

Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell-cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified-the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.


Assuntos
Biofilmes , Saccharomyces cerevisiae/fisiologia , Divisão Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Interações Microbianas , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
NPJ Biofilms Microbiomes ; 6(1): 7, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054862

RESUMO

Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Glucose/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Aderência Bacteriana , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Mutação , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Propriedades de Superfície
12.
Curr Genet ; 65(1): 147-151, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30191307

RESUMO

Yeasts create multicellular structures of varying complexity, such as more complex colonies and biofilms and less complex flocs, each of which develops via different mechanisms. Colony biofilms originate from one or more cells that, through growth and division, develop a complicated three-dimensional structure consisting of aerial parts, agar-embedded invasive parts and a central cavity, filled with extracellular matrix. In contrast, flocs arise relatively quickly by aggregation of planktonic cells growing in liquid cultures after they reach the appropriate growth phase and/or exhaust nutrients such as glucose. Creation of both types of structures is dependent on the presence of flocculins: Flo11p in the former case and Flo1p in the latter. We recently showed that formation of both types of structures by wild Saccharomyces cerevisiae strain BR-F is regulated via transcription regulators Tup1p and Cyc8p, but in a divergent manner. Biofilm formation is regulated by Cyc8p and Tup1p antagonistically: Cyc8p functions as a repressor of FLO11 gene expression and biofilm formation, whereas Tup1p counteracts the Cyc8p repressor function and positively regulates biofilm formation and Flo11p expression. In addition, Tup1p stabilizes Flo11p probably by repressing a gene coding for a cell wall or extracellular protease that is involved in Flo11p degradation. In contrast, formation of BR-F flocs is co-repressed by the Cyc8p-Tup1p complex. These findings point to different mechanisms involved in yeast multicellularity.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biofilmes , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
13.
PLoS Genet ; 14(7): e1007495, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965985

RESUMO

Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.


Assuntos
Biofilmes , Regulação Fúngica da Expressão Gênica , Glicoproteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética
14.
Science ; 360(6395)2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930109

RESUMO

Shlezinger et al (Reports, 8 September 2017, p. 1037) report that the common fungus Aspergillus fumigatus, a cause of aspergillosis, undergoes caspase-dependent apoptosis-like cell death triggered by lung neutrophils. However, the technologies they used do not provide reliable evidence that fungal cells die via a protease signaling cascade thwarted by a fungal caspase inhibitor homologous to human survivin.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Apoptose/imunologia , Morte Celular , Humanos , Pulmão/imunologia
15.
Oxid Med Cell Longev ; 2018: 4950591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765496

RESUMO

We summarize current knowledge regarding regulatory functions of long noncoding RNAs (lncRNAs) in yeast, with emphasis on lncRNAs identified recently in yeast colonies and biofilms. Potential regulatory functions of these lncRNAs in differentiated cells of domesticated colonies adapted to plentiful conditions versus yeast colony biofilms are discussed. We show that specific cell types differ in their complements of lncRNA, that this complement changes over time in differentiating upper cells, and that these lncRNAs target diverse functional categories of genes in different cell subpopulations and specific colony types.


Assuntos
Biofilmes/crescimento & desenvolvimento , RNA Longo não Codificante/metabolismo , Saccharomyces cerevisiae/patogenicidade , Diferenciação Celular , Humanos
16.
FEMS Yeast Res ; 18(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718174

RESUMO

Yeasts, like other microorganisms, create numerous types of multicellular communities, which differ in their complexity, cell differentiation and in the occupation of different niches. Some of the communities, such as colonies and some types of biofilms, develop by division and subsequent differentiation of cells growing on semisolid or solid surfaces to which they are attached or which they can penetrate. Aggregation of individual cells is important for formation of other community types, such as multicellular flocs, which sediment to the bottom or float to the surface of liquid cultures forming flor biofilms, organized at the border between liquid and air under specific circumstances. These examples together with the existence of more obscure communities, such as stalks, demonstrate that multicellularity is widespread in yeast. Despite this fact, identification of mechanisms and regulations involved in complex multicellular behavior still remains one of the challenges of microbiology. Here, we briefly discuss metabolic differences between particular yeast communities as well as the presence and functions of various differentiated cells and provide examples of the ability of these cells to develop different ways to cope with stress during community development and aging.


Assuntos
Candida/fisiologia , Interações Microbianas , Viabilidade Microbiana , Microbiota , Saccharomyces/fisiologia , Candida/crescimento & desenvolvimento , Candida/metabolismo , Saccharomyces/crescimento & desenvolvimento , Saccharomyces/metabolismo
17.
Oxid Med Cell Longev ; 2018: 4932905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576850

RESUMO

We present the spatiotemporal metabolic differentiation of yeast cell subpopulations from upper, lower, and margin regions of colonies of different ages, based on comprehensive transcriptomic analysis. Furthermore, the analysis was extended to include smaller cell subpopulations identified previously by microscopy within fully differentiated U and L cells of aged colonies. New data from RNA-seq provides both spatial and temporal information on cell metabolic reprogramming during colony ageing and shows that cells at marginal positions are similar to upper cells, but both these cell types are metabolically distinct from cells localized to lower colony regions. As colonies age, dramatic metabolic reprogramming occurs in cells of upper regions, while changes in margin and lower cells are less prominent. Interestingly, whereas clear expression differences were identified between two L cell subpopulations, U cells (which adopt metabolic profiles, similar to those of tumor cells) form a more homogeneous cell population. The data identified crucial metabolic reprogramming events that arise de novo during colony ageing and are linked to U and L cell colony differentiation and support a role for mitochondria in this differentiation process.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
18.
Yeast ; 35(8): 507-512, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29577419

RESUMO

We report an optimized low-input FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements-sequencing) procedure to assay chromatin accessibility from limited amounts of yeast cells. We demonstrate that the method performs well on as little as 4 mg of cells scraped directly from a few colonies. Sensitivity, specificity and reproducibility of the scaled-down method are comparable with those of regular, higher input amounts, and allow the use of 100-fold fewer cells than existing procedures. The method enables epigenetic analysis of chromatin structure without the need for cell multiplication of exponentially growing cells in liquid culture, thus opening the possibility of studying colony cell subpopulations, or those that can be isolated directly from environmental samples.


Assuntos
Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Saccharomyces cerevisiae/genética , Contagem de Células , Cromatina/química , Cromatina/metabolismo , Formaldeído/química , Genoma Fúngico/genética , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes
19.
BMC Genomics ; 18(1): 814, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061122

RESUMO

BACKGROUND: Yeast infections are often connected with formation of biofilms that are extremely difficult to eradicate. An excellent model system for deciphering multifactorial determinants of yeast biofilm development is the colony biofilm, composed of surface ("aerial") and invasive ("root") cells. While surface cells have been partially analyzed before, we know little about invasive root cells. In particular, information on the metabolic, chemical and morphogenetic properties of invasive versus surface cells is lacking. In this study, we used a new strategy to isolate invasive cells from agar and extracellular matrix, and employed it to perform genome wide expression profiling and biochemical analyses of surface and invasive cells. RESULTS: RNA sequencing revealed expression differences in 1245 genes with high statistical significance, indicating large genetically regulated metabolic differences between surface and invasive cells. Functional annotation analyses implicated genes involved in stress defense, peroxisomal fatty acid ß-oxidation, autophagy, protein degradation, storage compound metabolism and meiosis as being important in surface cells. In contrast, numerous genes with functions in nutrient transport and diverse synthetic metabolic reactions, including genes involved in ribosome biogenesis, biosynthesis and translation, were found to be important in invasive cells. Variation in gene expression correlated significantly with cell-type specific processes such as autophagy and storage compound accumulation as identified by microscopic and biochemical analyses. Expression profiling also provided indications of cell-specific regulations. Subsequent knockout strain analyses identified Gip2p, a regulatory subunit of type 1 protein phosphatase Glc7p, to be essential for glycogen accumulation in surface cells. CONCLUSIONS: This is the first study reporting genome wide differences between surface and invasive cells of yeast colony biofilms. New findings show that surface and invasive cells display very different physiology, adapting to different conditions in different colony areas and contributing to development and survival of the colony biofilm as a whole. Notably, surface and invasive cells of colony biofilms differ significantly from upper and lower cells of smooth colonies adapted to plentiful laboratory conditions.


Assuntos
Biofilmes , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cell Biol ; 216(6): 1811-1831, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468835

RESUMO

Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.


Assuntos
Arrestina/metabolismo , Endocitose , Glucose/deficiência , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/metabolismo , Arrestina/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Proteínas Nucleares/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Transcrição Gênica , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...